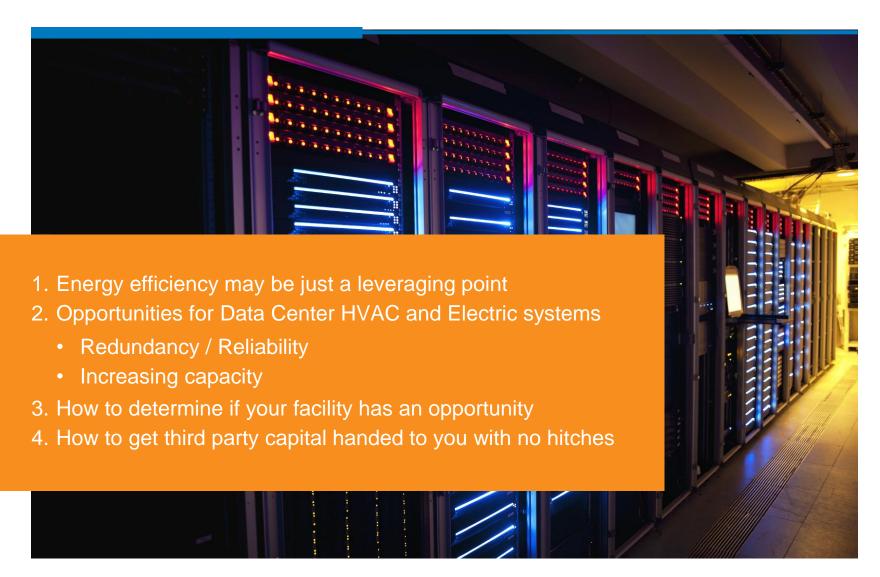


National Grid Your Partner in Energy Solutions

Data Center Presentation

February 27, 2013

Presented by: Fran Boucher | National Grid and John Weale | Integral francis.boucher@nationalgrid.com


Beat the heat with cool cash from utilities Grow your infrastructure with utility dough \$!

1. Two Part Presentation

- How National Grid efficiency programs benefit data centers beyond saving energy
- Spotlight on a new Thermal Analysis program National Grid provides

Webinar Objectives

Over \$200 Million Available In 2013!

Towns with Municipal Electric Companies EXCLUDED

Why Bother If Energy Cost Is Not Your Issue?

IT DEPARTMENT CONCERNS with Facility Infrastructure

- 1. Reliability
 - Uniform room temperature
 - Adequate HVAC capacity
 - Adequate redundancy of HVAC and UPS
 - HVAC and UPS service outages
- 2. Capacity for growth (HVAC and UPS)
- 3. Capital budget constraints

Stretching Your Capital

- 1. Instead of increasing HVAC capacity by 20% go as high as 100% with 2 to 2.5 year payback
- 2. A new UPS rather than simply doing a battery replacement

SURPRISE!

We do that!

and we use energy savings as source of funding!

Capacity, Reliability and Redundancy

Our solutions may assist you with existing facilities:

- 1. Identify hot spots and help fund corrective measures
- 2. Squeezing an extra 25 to 30% capacity out of your CRAC units
- 3. Extend capacity out of your generator back up
- 4. Provide you a completely redundant cooling system
- 5. Provide you with an additional (back up)cooling tower
- 6. Provide free cooling which gives you redundancy for chillers 30 to 40% of the hours in the year

Situations Where We Could Help

- 1. Inability to maintain low enough room temperatures
- 2. One CRAC unit with service issue creates a high temperature condition
- 3. Lawn sprinklers running on your roof top HVAC condensers

Op-Ex Reduction

 Cutting operating expenses for facilities by as much as \$500,000 annually

New Data Center Initiative

Targets: New, Existing, Expansions, Renovations

(Note: In NY ground up new construction are by NYSERDA)

- Data centers
- Computer Rooms
- Server farms
- Electronic equipment test rooms

May or may not have; raised floor, drop ceilings, UPS or generator

National Grid Services

- 1. Free initial walk through or plan review
- 2. Extensive metering or thermal graphic analysis where applicable
- 3. Up to 50% share of detailed energy efficiency studies
 - Investment grade technical and economic analysis
- 4. Incentives \$\$\$\$\$ for installing efficient equipment and controls
 - Engineering, labor and materials
 - Incentives up to \$1 million / project

You choose your own design engineer and the installing contractor

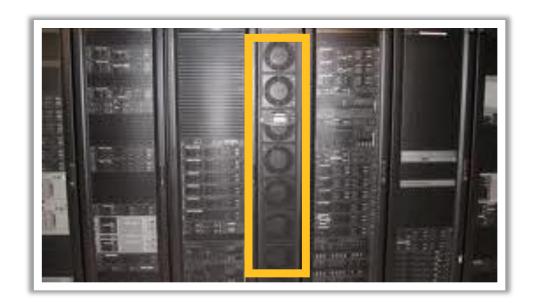
New Construction / Renovation

Top Opportunities

- 1. In row / close coupled cooling systems
- 2. VFD's on fans
- 3. Upgrading to include isle containment
- 4. More efficient UPS Systems
- 5. Free cooling

http://www.coolingzone.com/index.php?read=58&magigrid =22&onmag=true

Upflow Not Ducted


Ducted Upflow CRAC System

In Row Cooling Units

Example: Staples Adaptive Cool

Size: 25,000 SF

HVAC: 16- 20 to 30 Ton CRAC units

Annual Savings \$100,000

Cost: \$271,000

Incentive\$148,000Payback15 months

Case Study 2: Solution

- 1. Install hot isle containment
- 2. Shut off a several CRACs using automated controls
- 3. Adaptive Cool Panels
- 4. Install plenum return

Before After

University Reheat and Humidification

Size: approx. 2,000 SF

HVAC: Multiple CRAH units

Annual Savings \$7,500/ 67,000 kWh savings

Cost: \$500

Incentive None

Payback 1 month

Modification: Adjust Controls

Higher Education:

VSDs and Containment / Air Flow Mgmt.

Size: approx. 2,000 SF

HVAC: Multiple CRAH units

Annual Savings \$16,000/ 153,000 kWh savings

Cost: \$72,000

Incentive	\$36,000 (50%)
-----------	----------------

Payback 2.4 years after incentive

Modification: VSDs on CRAH units and air flow management

Multi-Tenant Retrofit Free Cooling

Size: approx. 20,000 to 30,000 SF

HVAC: More than 12 CRAH units

Annual Savings \$64,000/ 636,000 kWh savings

Cost: \$305,000

Incentive	\$150,000 (50%)
Payback	2.5 years after incentive

Modification: Adding dedicated tower to current under-utilized economizer.

Major Legacy DC Retrofit

Size: 100,000 SF

HVAC: 90- 30 Ton CRAC units

Annual Savings \$470,000 / 420,000 kWh savings

Cost: \$1.4 million

Incentive	\$ 930,000 !!!!!	
Payback	1.0 years	

VFD's on Fans, Containment, Blanking panels etc.

Most Common Opportunities and Solutions

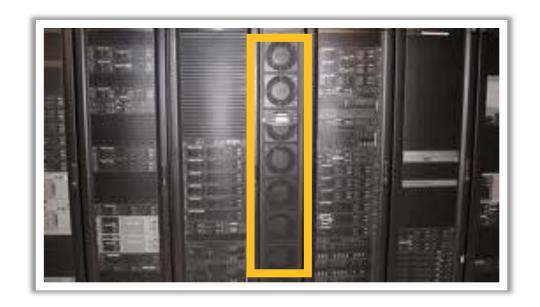
TOP RETROFIT OPPORTUNITIES (Things to fix)

- 1. Existing water side economizers grossly underutilized
- 2. Overhead supply CRAC systems not meeting load supplementing CRAC units with <u>Dx</u> close coupled cooling units.

RETROFIT SOLUTIONS

- Using ceiling plenums as return air path for downflow CRACs (reducing number of on line CRAC units)
- 2. Controls putting excess capacity on stand by (in excess of N+1)

90 % of jobs we've looked at have had opportunities to save energy



Before After

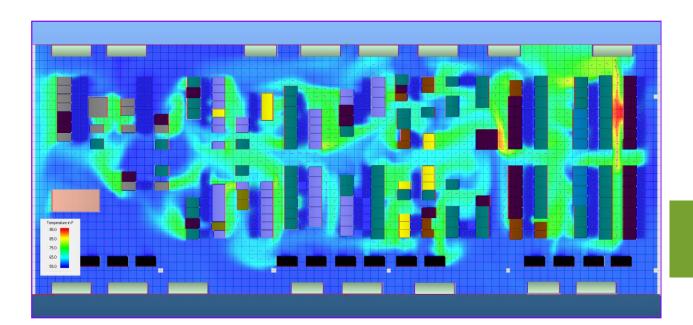
In Row Cooling Units

Solution Adaptive Cool

- 2'x 2' Floor tile with a VSD fan that pushes extra air where needed.
- Eliminates hot spots, reduces need for general overcooling
- For under floor cooling systems

Underestimating the Range of Solutions

What's your reason for not acting?


- 1. No water in data center
- 2. Floor space constraints
- 3. Can't get Hot Isle / Cold Isle configuration
- 4. Fire department objection to containment curtains
- 5. Plastic containment curtains unsightly?
- 6. Mismatched server cabinet dimensions?
 - There are "countless" products and approaches.
 - Each constraint can be overcome.

New National Grid Metering Pilot

Free to first 10 customers (\$3,500 to \$6,500 value)

- 1. Wireless metering of CRAC unit electric use
- 2. Temporary wireless sensors produce a "thermal image"

\$5,000 to \$7,500 Value

Metering Offer

Requirements

- 1. Facility must have sufficient cooling load to justify study
- 2. Metering Offer
 - Smaller sites: CRAC power monitoring (30 days)
 - Larger Computer room or Telcom sites: Thermal Graphic (6 hr.)
- 3. Includes initial summary of opportunities and high level analysis
- 4. Prepares you for consideration of full detailed study

Wireless Metering Option

Wireless power monitoring for CRACs

Typically for smaller projects with 3 to 6 CRAC Units

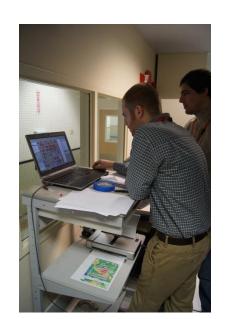
Measure reheat use, humidification power and compressors

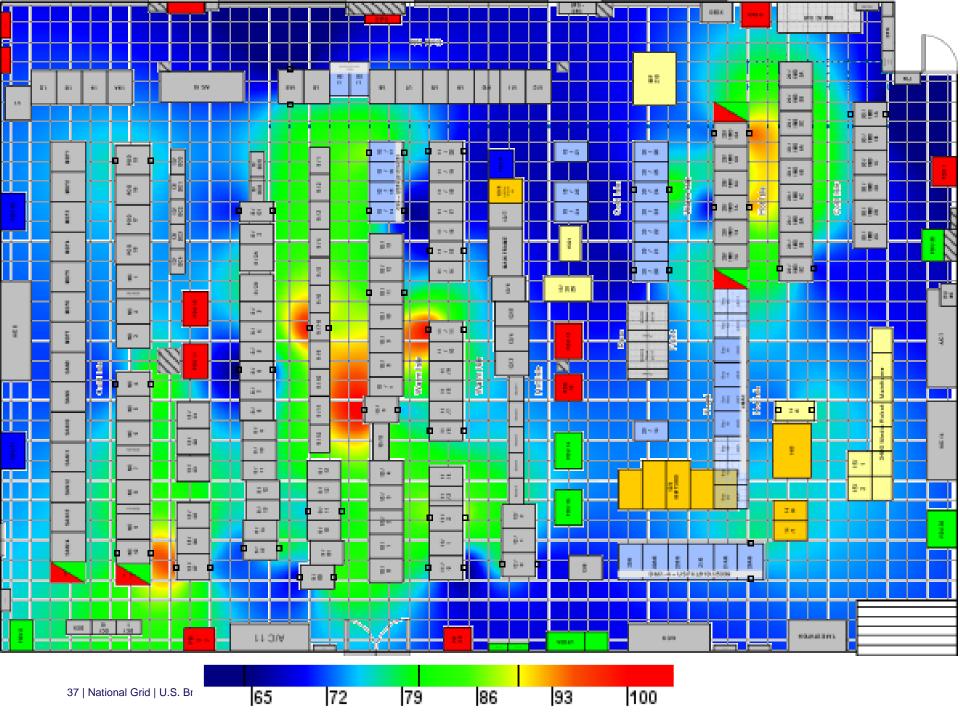
What is the Potential?

Our nine most recent surveys collectively identified \$1.0 million in annual savings.

Bonus Incentives For MA and RI

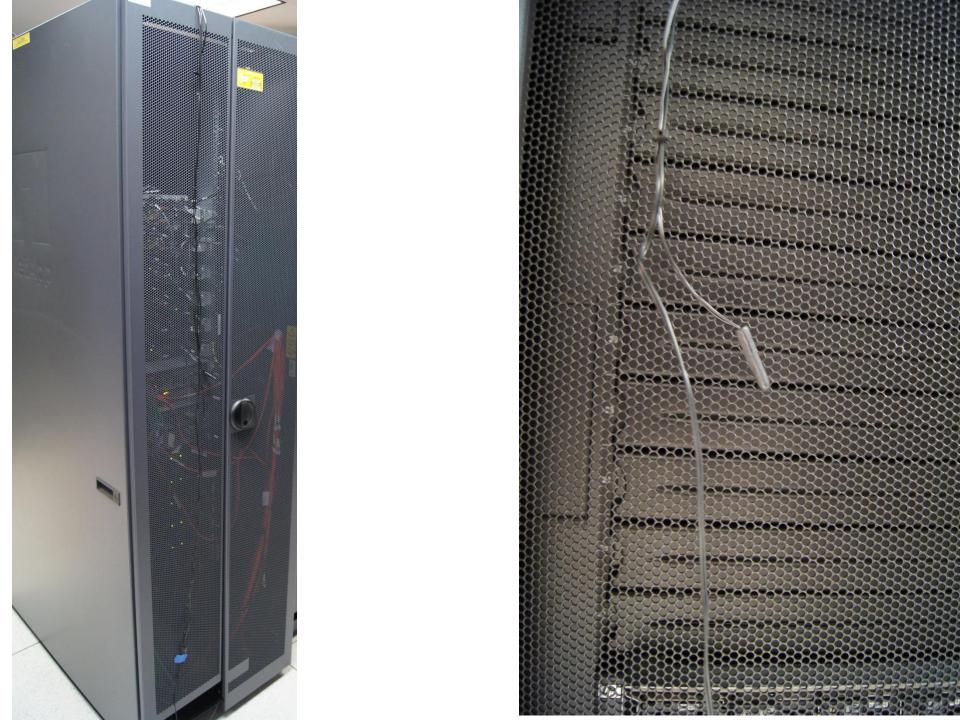
for many new projects completed in 2013!

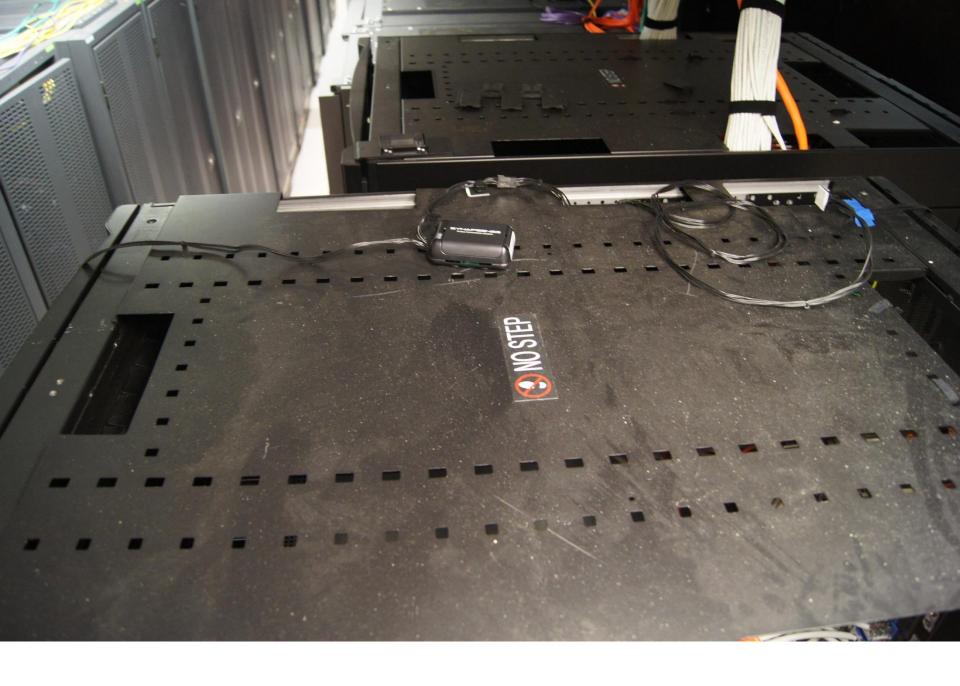

John Weale Integral Group

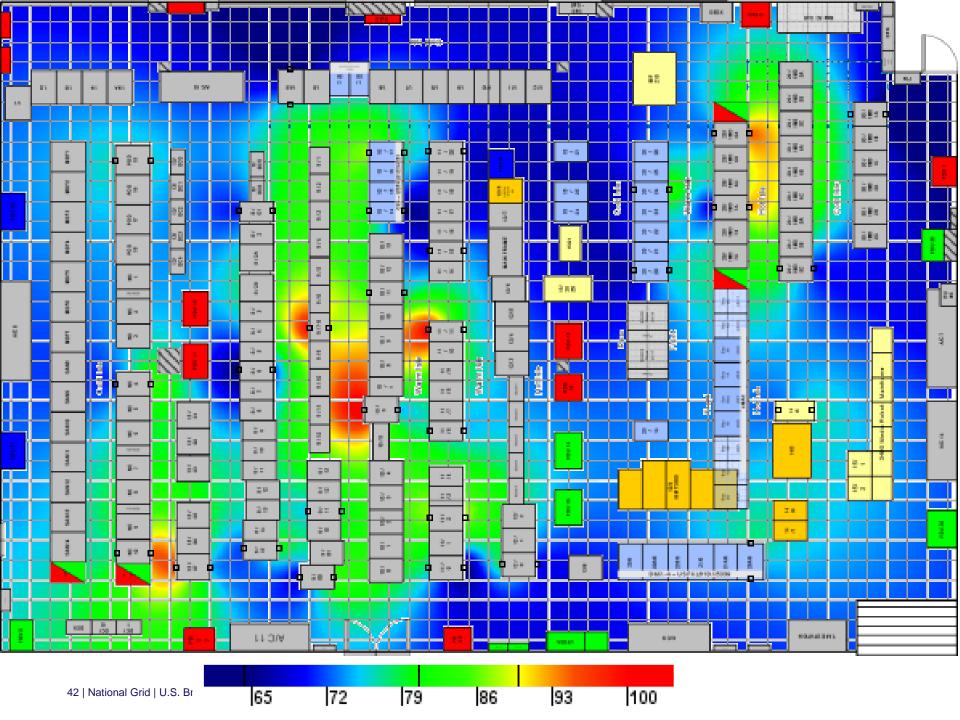


Thermal Mapping And

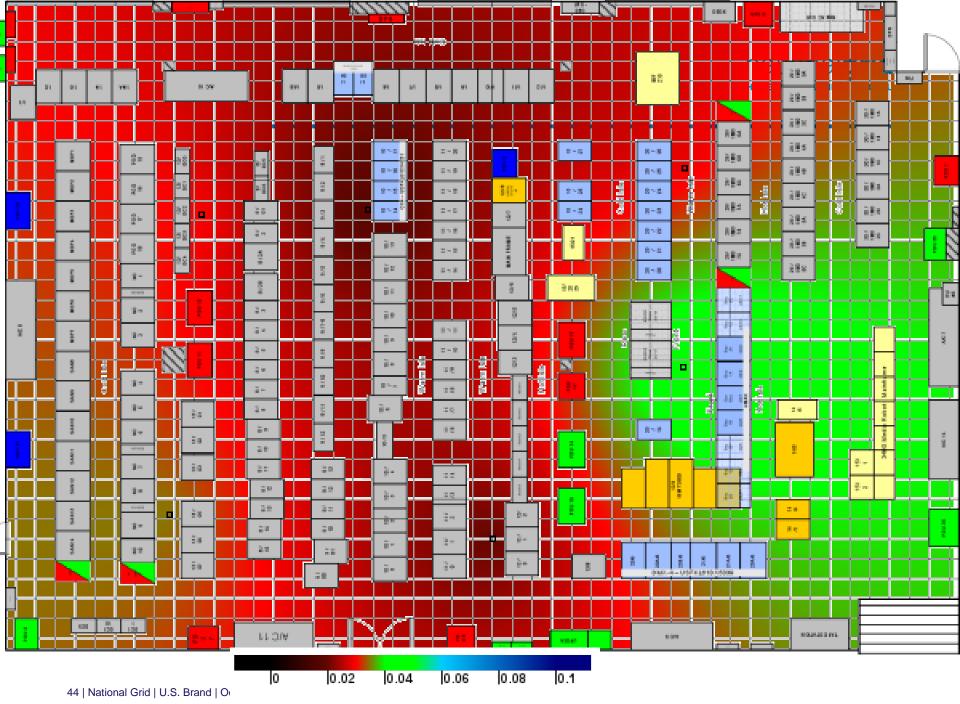
Efficiency Opportunities




Details: What is Thermal Mapping?



- Identifies hot spots by measuring the temperature across the entire floor
- 200 300 wireless temperature sensors deployed to make map
- Provides hard data on effectiveness of datacenter conditioning
- Attractive product to datacenter operators, emphasizes respect for critical nature of temperature control



Can map underfloor pressure distribution

Underfloor Pressure (in WG)

Sign Up for Free Metering Offer

LIMITED TIME OFFER!

Contact:

Fran Boucher

Francis.boucher@nationalgrid.com

Or contact me via Linked in

Fan Optimization

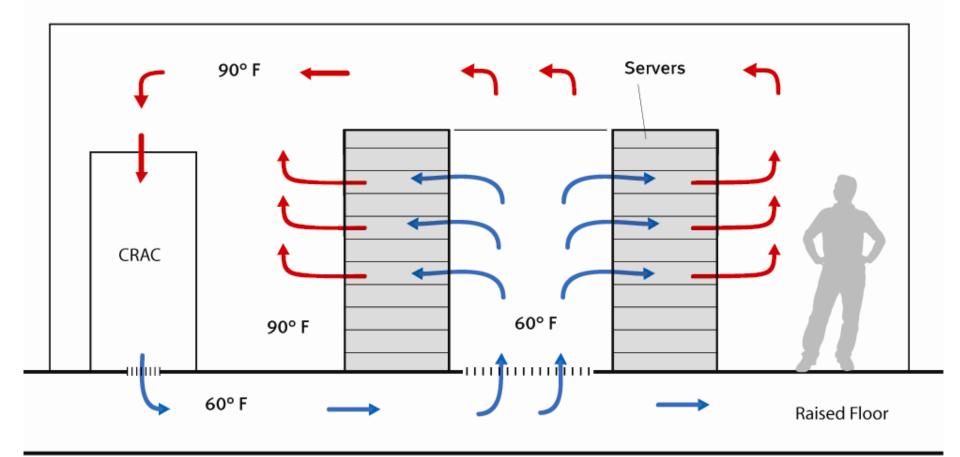
6/25/2012

Controls: Reheat & Humidification

- 1. Reheat is unnecessary but often on (and energy intensive)
- 2. Overly tight humidity bounds can result in fighting, uncontrolled dehumidification
- 3. Incentive "Problem": Payback is too low

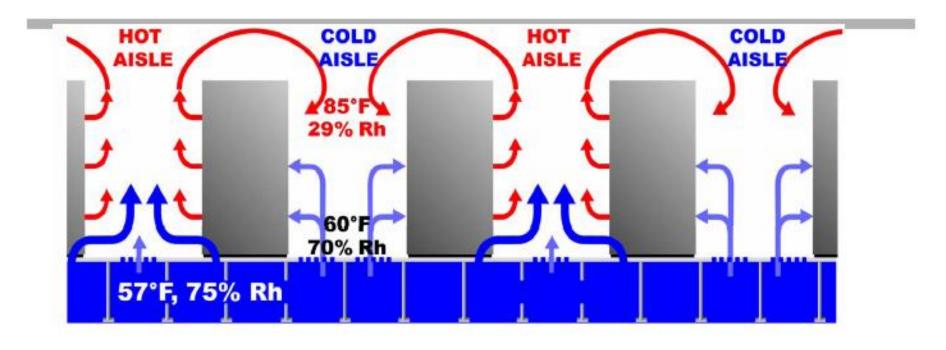
6/25/2012

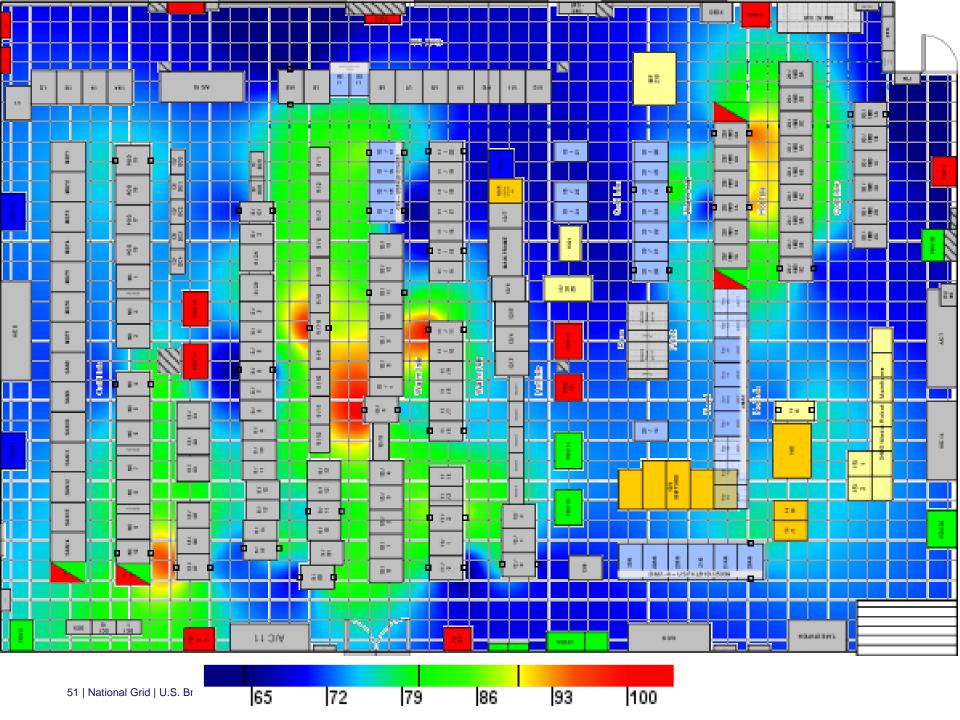
Case Study Results, Combined Measure


Site #	Measure	Cost Estimate	Annual Savings (kWh; \$)	Payback (before incentive)	Incentive
1	Disable reheat, add VFDs to CRAHs, airflow management	\$73,000	220,000; \$23,000	3.2	\$ 36,500
2	Disable reheat, airflow management, disable 1 CRAH	\$120,000	290,000; \$30,000	4	\$ 60,000

- 1. 2,000 SF Datacenter, CHW CRAHs and DX CRACS, Rhode Island
- 2. 7,000 SF Datacenter, 9 CRAHs, Andover MA

Air Management: Typical Data Center




Standard CRAC Unit Cooling Strategy

The Breakdown of the Hot Aisle/ Cold Aisle Configuration

"Retrofit" Chilled Water to Increase Capacity

Case Study, Drycooler Free Cooling

Site #	Measure	Cost Estimate	Annual Savings (kWh; \$)	Payback (before incentive)	Incentive
1	Install air cooled chiller with free cooling	\$290,000	600,000; \$63,000	4.6 years	\$ 145,000
1	Install in-row coolers to increase capacity	\$170,000	580,000; \$61,000	2.8 years	\$ 78,500
1	Combined	\$460,000	1,180,000; \$124,000	3.7 years	\$ 230,000

1. One MW Datacenter, DX CRACs & In-row CHW, Marlboro MA

Air Side Economizing Potential;

Supply Air	Full Economi	zing	Mechanical Cooling Only Ann		Percent of Annual Load
Temp.	hours	% of year	hours	% of year	Covered by Chillers
55	5,200	59%	2,000	23%	30%
70	6,700	76%	50	0.5%	10%

Free Cooling

Case Study, Cooling Tower Free Cooling

Site #	Measure	Cost Estimate	Annual Savings (kWh; \$)	Payback (before incentive)	Incentive
1	Renovate abandoned free cooling system	\$45,000	330,000; \$35,000	1.3 years	\$ 0
2	Add new free cooling system	\$1,000,000	1,300,000; \$140,000	7 years	\$ 500,000

- 1. 50,000 SF Datacenter, AHUs and CRAHs
- 2. Two MW Datacenter, CHW CRAHs

UPS Opportunities: Case Study Results

Site #	Measure	Cost Estimate	Annual Savings (kWh; \$)	Payback (before incentive)	Incentive
1	Install high efficiency UPS	\$80,000	285,000; \$30,000	2.7 years	\$35,000
2	Install high efficiency <i>modular</i> UPS	\$29,000	320,000 \$34,000	.9 years	\$0

- 1. 1 MW Datacenter, DX CRACs & In-row CHW
- 2. 400kW UPS load increase, datacenter expansion

Sign Up for Free Metering Offer

LIMITED TIME OFFER!

Contact:

Fran Boucher

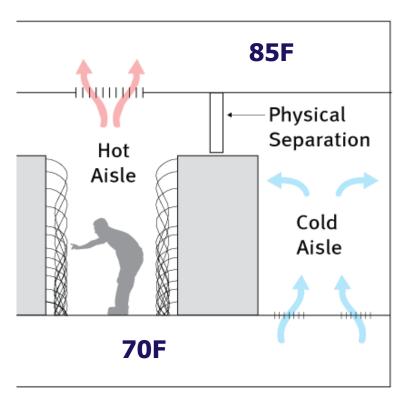
Francis.boucher@nationalgrid.com

Or contact me via Linked in

Thank you for participating today

Contact: Fran Boucher

Data Center Initiative Manger

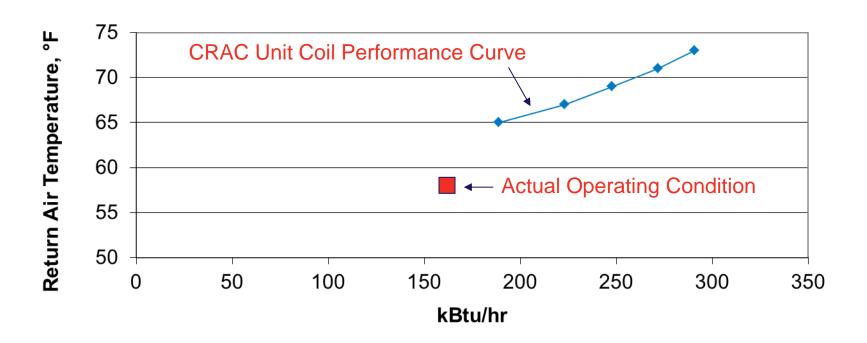

National Grid

Francis.boucher@nationalgrid.com

781-907-1571

Hot Aisle & Cold Aisle – Plenum Return or Overhead Supply

Cold Aisle Containment – Underfloor Supply, Space Return



Containment Can Increase Capacity

CRAC Unit Return Air Temperature vs. Design Capacity

Case Study Results, Combined Measure

Site #	Measure	Cost Estimate	Annual Savings (kWh; \$)	Payback (before incentive)	Incentive
1	Disable reheat, add VFDs to CRAHs, airflow management	\$73,000	220,000; \$23,000	3.2	\$ 36,500
2	Disable reheat, airflow management, disable 1 CRAH	\$120,000	290,000; \$30,000	4	\$ 60,000

- 1. 2,000 SF Datacenter, CHW CRAHs and DX CRACS, Rhode Island
- 2. 7,000 SF Datacenter, 9 CRAHs, Andover MA